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Abstract 

A new quasiperiodic (QP) pattern with dodecagonal 
symmetry defined by a self-similar inflation/deflation 
rule is presented. The pattern consists of three kinds of 
base tiles, thin rhombus, regular triangle and square, and 
their self-similar inflation/deflation rule is shown to be 
derived from a regular zonogon with 12-fold symmetry. 
The self-similar transformation matrix for this pattern is 
derived and the quasiperiodicity is discussed. 

I. Introduction 

The properties of quasiperiodic tilings with dodecagonal 
symmetry have been discussed by several authors. The 
studies of quasiperiodic tilings with pentagonal and 
decagonal symmetry began with the discovery of AI-Mn 
(icosahedral phase) (Schechtman, Blech, Gratias & Cahn, 
1984) and AI-Fe (decagonal phase) quasicrystals (Fung 
et al., 1986). The structure of crystalline states with 
dodecagonal symmetry in the Ni-Cr amorphous phase 
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(Ishimasa, Nissen & Fukano, 1985) gives clues to studies 
of quasicrystal modeling. A dodecagonal quasiperiodic 
tiling (DQPT) was first presented by the grid method and 
self-similar inflation (Stampfli, 1986), which contains 
regular triangles, squares and rhombi. Another approach 
for DQPT was proposed using a projection method 
(Yang & Wei, 1987). The projection and grid methods 
have been extended and generalized with 3-, 4-, 5-, 6-, 8- 
and 12-fold symmetry (Whittaker & Whittaker 1988; 
Socolar, 1989) and algebraic studies of dodecagonal 
tiling have been carried out in detail (Niizeki'& Mitani, 
1987). Recently, octagonal, decagonal and dodecagonal 
tilings have been summarized in relation to Amman bar 
grids (LUck, 1993). In this paper, a new DQPT is 
presented, which is characterized by a matching self- 
similar inflation/deflation rule in building self-similarity. 
The quasiperiodicity is verified by the fact that the ratios 
of numbers of constituent base tiles (regular triangle, 
square and rhombus) converge to an irrational number 
when the infinite iteration of the inflation is operated on 
each tile. 
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2. Generation of DQPT 

It is shown that the self-similar inflation rule for DQPT is 
derived from a regular zonogon (RZ) with 12-fold 
rotational symmetry consisting of three types of rhombi 
(thin and thick rhombus, and square), as shown in Fig. 
1 (c). Consider the inflated rhombi of the first generation 
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with an inflation ratio of 2 + 3 I/2 based on this RZ 
pattern: a thin rhombus including a zr/6 sector at the 
center and the symmetric pattern with respect to the 
peripheral thin rhombus; a thick rhombus including a 
2zr/3 sector at the center;, a square including a rr/2 sector 
at the center and four thick half rhombi added outside the 
peripheral thin rhombus (Fig. l c). 

Split the thick rhombus into two regular triangles and 
consider the triangle as one of the base tiles. Modify the 
edges of length 2 + 31/2 for the inflated thin rhombus, 
triangle and square into a zigzag shape so that all of the 
edges match as shown in Fig. 6. From the symmetry of 
inflated tiles, it is shown that the first generation of 
regular triangle and square have point group Cs and the 
rhombus has point group C2v. The zigzag-shaped 
rhombus, triangle and square have point symmetry 
C2, C 3 and Ca, respectively. Because of the discrepancy 
in the symmetry of the base-tile patterns in the inflated 

(a) (b) 
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Fig. 1. The 2D matching rule of the inflation with arrow notation on the 
edge. Black tiles show the zeroth-generation base tile. (a) Polar case 
of the first octagonal pattern generated by partitioning RZ into 
inflated rhombus and square tiles. (b) Nonpolar case of  the second 
octagonal pattern. (c) Polar case of the dodecagonal pattern generated 
by partitioning RZ into inflated rhombus, regular triangle and square 
tiles drawn with zigzag edge. Arrows on the edges of the base tiles 
are abbreviated. 

(iii) 
Fig. 2. (i) I~finiton of  orientation of  inflated tiles of the first octagonal 

tile. (a) Inflated rhombus and (b) square tiles with small ofientational 
arrow on the base tile. The large arrow represents the orientation of 
(a) rhombus and (b) square without the small orientational arrow. (ii) 
Orientation of  inflated second octagonal tiles. (a) Inflated rhombus 
and (b) square. Notation of large and small orientational arrows is the 
same as in (i). Double-headed arrows on the base tiles are 
abbreviated. (iii) Orientation of inflated dodecagonal tiles. (a) 
Inflated rhombus, (b) regular triangle and (c) square. Notation of 
large and small orientational arrows is the same as in (i). 
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(a) 

/ 

(b) 
Fig. 3. (a) Second and (b) third inflated square tile generated by deflation of second square tile (a). 
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patterns and the patterns themselves, it is necessary to 
specify the orientation of the base tiles in the inflated 
pattern to define the inflation rule. The orientations of 
triangles and squares are shown by the arrow on each 
base tile as in Figs. 2(iii)(b) and (c). 

Since any orientations of the base tile are allowable, 
every combination of the base-tile orientation in the first- 
generation pattern defines a different inflation/deflation 
rule and generates a different self-similar pattern. If 
different rules are selected randomly in the inflation 
sequence, a random tiling can be generated in which 12- 
fold symmetry is broken. This problem will be discussed 
elsewhere. 

The dodecagonal symmetry of these patterns is 
apparent by considering the 12 thin rhombi as arranged 
at the center of the RZ. It is easy to show that, by 
repetition of the inflation operations (magnified by 
2 + 31/2 after each assembly), the pattern can cover an 
area of arbitrary size. This perfect 12-fold symmetry 
cannot be found in the crystalline symmetry or periodic 
structure with translational order. The second-or third- 
generation patterns for a square tile, obtained by the 
inflation/deflation rule defined in Fig. 2(iii), are shown in 

Figs. 3(a) and (b). The second-generation patterns of 
DQPT by the same inflation/deflation rule having 12-fold 
symmetry are shown with colored tiles in Fig. 4. 

It is interesting to note that the inflation rule for the 
first octagonal pattern (Beenker, 1982) and the second 
octagonal pattern (Watanabe, Ito & Soma, 1987) can be 
derived by patterning based on a RZ of 8-fold symmetry 
as shown in Figs. l(a) and (b). 

In order to verify the dodecagonal symmetry, the 
diffraction pattern of the vertices in the second-genera- 
tion pattern for the square tile is calculated and shown in 
Fig. 5. Although most of the strong reflections reveal 12- 
fold symmetry, weak spots with 4-fold symmetry are 
noticeable, reflecting the distribution of the lattice 
vertices of a square tile of only the second generation. 

The fractal growth of the circumference of each tile is 
clear at a glance. The fractal dimension D (Mandelbrot, 
1983) is represented by a ratio of logarithmic functions, 
log N/ log(1 / r ) ,  where N is the number of interval units 
of the generator that corresponds to a Koch curved line 
and 1/r is a straight interval unit. In the case of DQPT, 
N = 5 and r = 2 + 31/2 and D _~ 1.22 is obtained by the 
geometry shown in Fig. 6. 

Fig. 4. Third-generation pattern of a DQPT around the center of dodecagonal symmetry. Coloring with orange for rhombus, green for triangle and 
aqueous blue for square. 
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3. Matching rule of DQPT 

In the building of quasiperiodic tiling, it is necessary to 
take into account the matching rule in the self-similar 
inflation of the base tiles. In this section, the relation 
between the arrow notation on the edge, which is used 
conventionally as an expression of the rule, and the 
symmetry of the inflated pattern is considered. If an 
internal assembly point on an edge shared by adjacent 
base tiles is asymmetric in the self-similar inflation, 
as is seen in the shared edge that has polarity with 
1:2 ~/2 division in the first octagonal tiling and 
l : r [ r -  (1 +51/2)/2] division in the pentagonal tiling 
(de Bruijn, 1981; Watanabe & Ikegami, 1991; Zobetz & 
Preisinger, 1990; Zobetz, 1992), the sense of the arrow 
on the edge (usually shown by the arrow notation) has to 
be consistent with that of the base tile. However, if 
assembly points exist at a symmetrical position like the 
1:2n/2:1 division in the second octagonal tiling, the 
common edge is nonpolar. Examples of the edge 
connection are shown in Figs. l(a) and (b) for the first 
and second octagonal patterns with the sense of the arrow 
on the edge and no sense of the arrow, respectively. 

In the polar case, once the rule of the arrow on the 
edge is satisfied, a 2D quasi-periodic (QP) pattern is 

• • • 
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o 
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Fig. 5. Simulated diffraction pattern of a second-generation square tile. 

determined uniquely and is automatically generated by 
the inflation of any order. In the nonpolar case, however, 
the QP pattern could not be determined uniquely by 
considering only the matching of the assembly points on 
the edge. In the DQPT case, although a clockwise arrow 
notation could be presented for the edges of three kinds 
of tiles represented by a zigzag boundary (polar case) as 
in Fig. 1 (c), where one tile is matched to the adjacent one 
by a pair of arrows with opposite sense on the common 
edge, any edge can match every rotation of square and 
triangle tiles. In order to resolve this ambiguity, the 
orientation of a base tile in the inflated pattern is 
considered. An orientational arrow (o.a.) is presented on 
the base tile according to the symmetry of the inflated 
pattern as described for the building of the DQPT in the 
previous section. 

The rule is applied to the first and second octagonal 
tilings. In the first octagonal case, the inflated tiles have 
Cs and C2v point groups for the square and rhombus, 
respectively, as shown in Fig. 1 (a). As the o.a. pattern of 
the inflated first octagonal rhombus and square take the 
same point symmetry as base tiles C2v and C s, 
respectively, its QP pattern can be determined uniquely 
as shown in Figs. 2(i)(a) and (b). The symmetry of the 
arrow on the edge is consistent with that of the inflated 
pattern with the o.a. of the base tiles. In the second 
octagonal case, the inflated rhombus and square have Cs 
and Csv point groups, respectively, as shown in Fig. 1 (b). 
In this case, since the second octagonal rhombus pattern 
has lower symmetry (C~) than the first (C2v), its 
orientation must be defined by a large arrow along the 
long diagonal line. Therefore, while the point symmetry 
of the o.a. pattern in the inflated square, C8~, is conserved 
as in Fig. 2(ii)(b), that in the rhombus reduces from C S to 
C l as in Fig. 2(ii)(a). Thus, the second octagonal QP 
pattern can be determined uniquely. 

In the DPQT case, the point group of the inflated o.a. 
patterns of rhombus C2~ and triangle C~ are reduced to 
the lower C L, but that of the square C~ is conserved as in 
Fig. 2(ii)(c). In the polar case, the inflated pattern could 
not be determined uniquely by only the arrow on the 
edges but this problem is resolved by considering the 
inflated pattern of the o.a. of the base tiles. 

It is shown that, after all, the matching rule in both 
cases results in the orientation of the inflated pattern, 
consequently the arrow notation should be presented on 
the tile surfaces rather than on the tile edges. 

/ \  ...... ! 

,- @ -. ~ - . . . . . . .  . . . . . . . . .  | . . . . . . . . .  
J | _ . "  . . . . . . . . .  

, ~ .  . . . . . .  3 1 / 2 _ _  - / ~ " - -  . /  " ~  . . . . . . . . . . .  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . . . . . . . . . . . . .  

Fig. 6. Geometrical fractal generator of the circumference of DQPT. 

4. Inflation transformation of DQPT 

In this section, the properties of the DQPT pattern are 
discussed. As shown in the previous section, DQPT is 
composed of three kinds of base tile: rhombus, regular 
triangle and square. If R t°), T t°) and S ~°) represent the 
zeroth-generation tiles, respectively, the area of each base 
tile is given by Ie<°)l = ½, ITt°)[ = 31/2/4 and ISt°)l = 1, 
respectively. The first generation of the inflated rhombus 
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consists of three R (°), eight T (°) and two S(°); the regular 
triangle of two R (°), seven T (°) and two S(°); and the 
square of six R (°), sixteen T (°) and four S (°). The self- 
similar transformation matrix M is represented as 
follows: 

3 8 2 
M =  2 7 2 

6 16 4 

of M, Here, three eigenvalues 

. (1) 

o.1 = 7 + 4 x 31/2, 

o" 2 = 7 - 4 x 3 !/2 and o" 3 = 0, are obtained taking into 
account the singularity of M (the third row is twice the 
first row). The value of o.l = 7 + 4 x 31/2 corresponds to 
the square of the inflation scale of base vector 2 + 3 I/2, 
so that o'1 is the inflation scale of the area of the 
constituent tile. The relation o" 2 - 1/a~ shows that the 
two eigenvalues take the inflation and deflation scales, 
respectively. Zero o" 3 eigenvalue means there exists one 
tile that is represented by a linear combination of the 
other two tiles. In this case, the condition IS(')l = 21R(')I 
is taken into account for the following diagonalization 
of M. 

Let U (°) be the column vector of a set of areas of base 
tiles of DQPT: 

IR(°)I ) 
U (°) = IT(°) I , (2) 

IS(°) I 

then the nth-generation column vector U (") is represented 
as 

U (") = MU ('-1) = M2U ('-2) . . . . .  M"U (°). (3) 

Consequently, quasiperiodicity is 13roved using an 
expanded form of M ' .  The ratios of the numbers of base 
tiles should converge to an irrational number when n 
approaches infinity. 

In order to determine the nth power of such an 
inflation matrix M ' ,  matrices T and T -1 are introduced 
as follows: ( oo) (1o ) 

T =  1 0 , T -m = 0 1 , (4) 
0 1 - 2  0 

where TT -I = I (unit matrix). In order to diagonalize M, 
a similar transformation of M is presented: 

1~1 = T-1MT,  1~ 2 = T-1M2T . . . . .  1~1" = T - t M ' T  

(5) 

or 

M" = TI~'T -I (6) 

Here, all the third-row elements of 1VI are zero and the 
first- and second-row elements of M are partitioned into 
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a 2 x 2 matrix/~1 and a column matrix ( '~'' ). Thus, 1~1 is " m23 
represented by M and (rL3) as follows. rh23 

(m',,)) 
M= 0 o "m6' • 

Here, 

1~! :  ( ~ "  r h ' 2 ) =  ( :  ~ ) ,  (rh'3)=m23 ( ~ ) .  
\ m21 m22 

(7) 

(8) 

From successive calculation of (5 2 for n = 1, 2, 3 . . . . .  
the nth-generation matrix form of M" is deduced: 

l~/l" = ( 0 l~" 0 1~('--1)(r?1'3 ) ) 0  ,~23 . (9) 

Equation (9) is confirmed by the mathematical induction 

l~l(.+ 1) 
m23 

0 

(10) 

as follows. 

= M('+') = ( 0 
\ 

M" is obtained by substituting (9) into (6). The expanded 
form of M" is determined by I(,!" and 1~! ('-l). Since the 
eigenvalues of 1VI are o.+ = (7 + 4  x 31/2)/2 and 
o._ = (7 - 4 x 31/2)/2, 1~1" is represented, by calculation 
of the usual diagonalization, as 

1~!" = ( 2('-1)(o.~- + °"  ) (2" x 3'/2/3)(o.~ - o."--) ) 
2 ( ' - 2 ) 3 1 / 2 ( ~ +  _ o.n_) 2('-l)(o.~_ + o~) • 

(11) 

M" is determined by substitution of ]~'1" and ]~(.-o into 
those in (9) and consequently M" is obtained using (6). 
The matrix elements of M'(mi;) are represented with o.+ 
and o._ as follows. 

(12) 

mll = (2"-1/3){(o.+ + 1)O.+ -l + (a_ + 1)a "-I } 

ml2 = (31/2 x 2"/3)1(t~+- o.~_)} 

m l  3 = (2"-1/3){(o.+ l _ ' - I  -- ~)O+ + ((7"_ -- ~)O_1 --'-l/j 

m21 = 3 × 2"-4{(a+ 5 _,,-i - ~)o+ + (o_ - ~)(,_5 _'-I } 

m2 2 : 2"-1(~+ + o.n_) 

m2 3 = 2"-3{((7+ + 1 -n-I 1 "- 90+ + (o_ + } i)o._ l 

rn3~ = 2rn~, m32 = 2m~2, m33 = 2m~3. 

5. Convergence of occurrence frequency of U (") 

The estimation of the occurrence frequency of the base 
tiles in R ('), T (') and S (') when n approaches o<~ is 
considered based on (3). The frequency of each tile is 
represented in the form of the ratios of numbers of each 
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base tile in every inflated tile, i.e. 

(13) 
m l 2 / m , l ,  m l 3 / m l , ,  m13/m12 in R ('), 
m22/m21, m23/m21, m23/m22 in T ('), 

m32/m31, m33/m31, m33/m32 in S ('). 

It is obvious from (12) that the ratios of numbers in 
S (n) have the same values as in R(n); consequently, the 
calculation is carried out only for the ratios in R (') and 
T ("). The ratios of numbers of two kinds of base tiles in 
different inflated tiles should converge to the same 
limiting value of irrational number when the size of an 
inflated tile becomes infinite by the self-similar opera- 
tion. The calculation of these ratios is carried out using 
(12). The convergent values for infinite n are presented 
as follows. 

their convergent values of occurrence frequency in the 
infinite tile. These problems will be discussed elsewhere 
with those of fractal growth of each tile or the acceptance 
domain. 

The authors thank Professor Tateaki Sasaki of 
Tsukuba University for valuable discussions on the 
algebraic treatment and Mr Ikegami of Instrumentation 
and Characterization Center and the staff of the 
Computation Center, both of the Institute of Physical 
and Chemical Research, for technical support and 
drawing figures. 

This work is partly supported by Special Coordination 
Funds for Promoting Science and Technology. 

n -+ oo m l2 /m l l  = m22/m21 = m32/m31 

(16 + 10 x 31/2)/11 

n ~ O0 m l 3 / m l l  : m 2 3 / m 2 1  : m33/m31 

(2 + 4 x 31/2)/1 1 

n ~ t:X) ml3/ml2  : m23/m22 : m33/m32 --~ 2 -- 3 I/2. 

(14) 

The necessary condition of quasiperiodicity is verified 
by the existence of an irrational number of convergent 
values in (14). 

6. Concluding remarks 

A new quasiperiodic pattern with dodecagonal symmetry 
is presented by self-similar inflation. Properties of 
DQPT, the quasiperiodicity of the pattern and the fractal 
dimension of the boundary are investigated. This pattern 
is characterized and determined uniquely by the inflation 
rule which depends on the orientation of the base tiles in 
the first-generation tile. 

Another interest of DQPT is the classification of the 
types of vertex where three kinds of tile assemble and 
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